
Building Java Programs
Chapter 1

Introduction to Java Programming

Basic Java programs with
println statements

3

Compile/run a program
1. Write it.

– code or source code: The set of instructions in a program.

2. Compile it.
• compile: Translate a program from one language to another.
– byte code: The Java compiler converts your code into a format

named byte code that runs on many computer types.

3. Run (execute) it.
– output: The messages printed to the user by a program.

source code
compile

byte code
run

output

4

A Java program
public class Hello {

public static void main(String[] args) {
System.out.println("Hello, world!");
System.out.println();
System.out.println("This program produces");
System.out.println("four lines of output");

}
}
• Its output:

Hello, world!

This program produces
four lines of output

• console: Text box into which
the program's output is printed.

5

Structure of a Java program
public class name {

public static void main(String[] args) {
statement;
statement;
...
statement;

}
}

• Every executable Java program consists of a class,
– that contains a method named main,

• that contains the statements (commands) to be executed.

class: a program

statement: a command to be executed

method: a named group
of statements

6

System.out.println

• A statement that prints a line of output on the console.
– pronounced "print-linn"
– sometimes called a "println statement" for short

• Two ways to use System.out.println :

• System.out.println("text");
Prints the given message as output.

• System.out.println();

Prints a blank line of output.

7

Names and identifiers
• You must give your program a name.

public class GangstaRap {

– Naming convention: capitalize each word (e.g. MyClassName)
– Your program's file must match exactly (GangstaRap.java)

• includes capitalization (Java is "case-sensitive")

• identifier: A name given to an item in your program.
– must start with a letter or _ or $
– subsequent characters can be any of those or a number

• legal: _myName TheCure ANSWER_IS_42 $bling$

• illegal: me+u 49ers side-swipe Ph.D's

8

Keywords
• keyword: An identifier that you cannot use because it already

has a reserved meaning in Java.
abstract default if private this
boolean do implements protected throw
break double import public throws
byte else instanceof return transient
case extends int short try
catch final interface static void
char finally long strictfp volatile
class float native super while
const for new switch
continue goto package synchronized

9

Syntax
• syntax: The set of legal structures and commands that can be

used in a particular language.
– Every basic Java statement ends with a semicolon ;
– The contents of a class or method occur between { and }

• syntax error (compiler error): A problem in the structure of
a program that causes the compiler to fail.
– Missing semicolon
– Too many or too few { } braces
– Illegal identifier for class name
– Class and file names do not match

...

10

Syntax error example
1 public class Hello {
2 pooblic static void main(String[] args) {
3 System.owt.println("Hello, world!")_
4 }
5 }

• Compiler output:
Hello.java:2: <identifier> expected

pooblic static void main(String[] args) {
^

Hello.java:3: ';' expected
}
^
2 errors

– The compiler shows the line number where it found the error.
– The error messages can be tough to understand!

11

Strings
• string: A sequence of characters to be printed.

– Starts and ends with a " quote " character.
• The quotes do not appear in the output.

– Examples:
"hello"
"This is a string. It's very long!"

• Restrictions:
– May not span multiple lines.
"This is not
a legal String."

– May not contain a " character.
"This is not a "legal" String either."

12

Escape sequences
• escape sequence: A special sequence of characters used to

represent certain special characters in a string.
\t tab character
\n new line character
\" quotation mark character
\\ backslash character

– Example:
System.out.println("\\hello\nhow\tare \"you\"?\\\\");

– Output:
\hello
how are "you"?\\

13

Questions
• What is the output of the following println statements?

System.out.println("\ta\tb\tc");
System.out.println("\\\\");
System.out.println("'");
System.out.println("\"\"\"");
System.out.println("C:\nin\the downward spiral");

• Write a println statement to produce this output:
/ \ // \\ /// \\\

14

Answers
• Output of each println statement:

a b c
\\
'
"""
C:
in he downward spiral

•println statement to produce the line of output:
System.out.println("/ \\ // \\\\ /// \\\\\\");

15

Questions
• What println statements will generate this output?

This program prints a
quote from the Gettysburg Address.

"Four score and seven years ago,
our 'fore fathers' brought forth on
this continent a new nation."

• What println statements will generate this output?
A "quoted" String is
'much' better if you learn
the rules of "escape sequences."

Also, "" represents an empty String.
Don't forget: use \" instead of " !
'' is not the same as "

16

Answers
•println statements to generate the output:

System.out.println("This program prints a");
System.out.println("quote from the Gettysburg Address.");
System.out.println();
System.out.println("\"Four score and seven years ago,");
System.out.println("our 'fore fathers' brought forth on");
System.out.println("this continent a new nation.\"");

•println statements to generate the output:
System.out.println("A \"quoted\" String is");
System.out.println("'much' better if you learn");
System.out.println("the rules of \"escape sequences.\"");
System.out.println();
System.out.println("Also, \"\" represents an empty String.");
System.out.println("Don't forget: use \\\" instead of \" !");
System.out.println("'' is not the same as \"");

17

Comments
• comment: A note written in source code by the programmer

to describe or clarify the code.
– Comments are not executed when your program runs.

• Syntax:
// comment text, on one line

or,
/* comment text; may span multiple lines */

• Examples:
// This is a one-line comment.

/* This is a very long
multi-line comment. */

18

Using comments
• Where to place comments:

– at the top of each file (a "comment header")
– at the start of every method (seen later)
– to explain complex pieces of code

• Comments are useful for:
– Understanding larger, more complex programs.
– Multiple programmers working together, who must understand

each other's code.

19

Comments example
/* Suzy Student, CS 101, Fall 2019

This program prints lyrics about ... something. */

public class BaWitDaBa {
public static void main(String[] args) {

// first verse
System.out.println("Bawitdaba");
System.out.println("da bang a dang diggy diggy");
System.out.println();

// second verse
System.out.println("diggy said the boogy");
System.out.println("said up jump the boogy");

}
}

